LOWE SYNDROME TRUST | Research Grants awarded from the charity from June 2000 – April 2019

- £25,000 contributed to three research projects through the Lowe Syndrome Association USA.
- £9,000 to Great Ormond Street Children’s Hospital, July 2002
 Professor Unwin, Dr Van’t Hoff & Dr Laube: “An investigation of intracellular metabolism in renal proximal tubular cells from patients with Lowe Syndrome”
- £50,000 to Imperial College London, Department of Chemistry, December 2002 (plus £10,000 - June 2006)
 Dr Vilà-Compte and Dr Woscholski: “A novel diagnostic tool for the oculocerebrorenal Syndrome of Lowe”
- £50,000 to University of Dundee, Scotland, July 2003
 Dr J Lucocq: “OCRL and its lipid products”
- £50,000 to University College London, January 2004
 Professor S Cockcroft: “Assessment of Golgi structure and membrane traffic in OCRL Cells”
- £50,000 to Institute of Ophthalmology (Moorfields), May 2005
 Dr Tim Levine: “The Cell Biology of the Effects of Lowe Syndrome in the Eye”
- £20,000 to Addenbrooke’s Hospital, Cambridge, November 2005
 Dr Athony Norden and Professor Robert Unwin: Proposed 2 year extension to current Research Project: “The role of the megalin-cubilin system in the proteinuria of Lowe Syndrome”
- £51,000 to MD Institute for Human Genetics and Department of Medicine, University of California, San Francisco, March 2006
 Professor Robert L Nussbaum: “Building on the current research funded by the Lowe Syndrome Trust, this project presents the next small but significant step in a very long journey - hopefully leading to understanding the basic underlying defect of the disease”
- £10,000 to Dundee University, April 2007
 Dr John Lucocq Lowe Neuromuscular research project
- £51,000 to University of California, July 2007
 2nd year funding for Professor Robert Nussbaum (see above)
- £80,000 to University of Manchester, November 2007
 Dr Martin Lowe: “Zebrafish as a model organism to study Lowe syndrome”
- £100,000 to Purdue University Indiana, USA, January 2008
 Dr Claudio Aguilar: “A study of the behaviour of cells from patients suffering the Lowe Syndrome disease”
- £80,000 to Imperial College London,
 Dr Rudiger Woscholski: “Elucidating role of PIP2 dependent pathways by chemical intervention”
- £68,000 to Birmingham University, March 2013
 Dr Jane Waite and Professor Chris Oliver, Cerebra Centre for Neurodevelopmental Disorders, Birmingham University: “Research into behaviour characteristics”
- £10,000 to University of Manchester, December 2014
 Dr Martin Lowe: “Continuation Zebrafish as a model organism to study Lowe syndrome”
- £50,000 to Purdue University/Manchester University, June 2015
 Professor Martin Lowe & Assistant Professor Claudio Aguilar: “Testing candidate drugs capable of reverting Lowe patient phenotypes; also to establish how patient mutations determine symptoms/phenotypes; therefore, producing the basis for personalized/precision medicine”
- £60,000 to Manchester University, September 2016
 Dr Martin Lowe: “Using the zebrafish model to screen for drugs that may be used to treat the Lowe Syndrome disease”
- £80,000 to Institute of Genetics & Medicine, Naples, November 2017
 Maria Antonietta De Matteis: “Testing FDA approved drugs in preclinical models of Lowe Syndrome”
- £10,000 to Manchester University, November 2017
 Extension research funding for Dr Martin Lowe (see above)
- £25,000 to Manchester University, January 2019
 Extension research funding for Dr Martin Lowe (see above)
1. What is Lowe Syndrome?
Lowe Syndrome (LS) is a rare genetic condition that causes physical and mental handicaps and medical problems. Also called oculo-cerebro-renar (OCRL) Syndrome, it was first described in 1951 by Dr. Charles Lowe and colleagues. In some cases Lowe Syndrome is the result of an original mutation and the mother is not the carrier.

2. What causes Lowe Syndrome?
Lowe Syndrome is caused by a defective gene that results in the deficiency of an enzyme called phosphatidylinositol 4,5-biphosphate. This enzyme is essential to normal metabolic processes that take place in a certain part of the cell called Golgi apparatus. Because of the enzyme deficiency, cell functions that are regulated by the Golgi are abnormal, leading to various developmental defects including cataracts, kidney and brain problems. How the enzyme deficiency leads to these defects is not yet completely understood.

3. What are the common features of Lowe Syndrome?
- Cataracts in both eyes, found at birth or shortly after birth
- Glaucoma (in about half of cases)
- Poor muscle tone and delayed motor development
- Mental impairment, ranging from borderline to severe
- Seizures (in about half of cases)
- Severe behavioural problems (in some cases)
- Kidney involvement (“leaky” kidneys or renal tubular acidosis)
- Short stature
- Tendency to develop Rickets, bone fractures, scoliosis and joint problems
- Short life span due to progressive renal failure, seizures and other causes: life expectancy may increase in the near future as knowledge increases
- Arthritis (swelling of the joints)
- Respiratory illness
- Cysts
- Undescended testicles
- Constipation
- Tooth decay

4. What are boys with Lowe Syndrome like?
Generally, they are affectionate and sociable, love music and have great senses of humour.

5. How is Lowe Syndrome treated?
There is no cure, but many of the symptoms can be treated effectively through medication, surgery, physical and occupational therapies and special education.

6. What about Research?
In 1992 the gene that causes LS was found. In 1995 researchers discovered that the missing gene defect causes an enzyme deficiency. Researchers are continuing to investigate the function of the gene and the complicated biochemical and cellular mechanisms of LS. Other areas that researchers have investigated in recent years include behaviour problems and clinical care.

The Lowe Syndrome Trust was founded in June 2000 with an aim to fund Lowe medical research which will hopefully lead to better treatments and eventually a cure for the disease.

7. Can Lowe Syndrome be prevented?
In families in which a case of LS has occurred, a special eye examination can help determine carrier status of at-risk females. Research currently underway may lead to a more definitive genetic test for carrier status. Various family planning options are available, including parental testing. Families should consult with a geneticist to learn more about their options.

8. Where are diagnostic tests done?
To diagnose Lowe Syndrome within the UK, a DNA test can be requested via a consultant from Dr Andrew Wallace at St Mary's Hospital Regional Genetics Services, Manchester. A skin sample can also be taken and sent to the Biochemical Genetic Laboratory at Baylor College of Medicine in Houston, Texas. Prenatal diagnosis is also provided at this laboratory. Physicians and families should contact the Lowe Syndrome Trust to find out further information on these tests.

9. How can I learn more?
Contact the Lowe Syndrome Trust for a copy of the Living with Lowe Syndrome: A guide for Families, Friends and Professionals. Single copies are free.

10. How is Dents disease linked to Lowe Syndrome?
Please read attached information sheet.

Lowe Syndrome is a devastating genetic disease that affects thousands of little boys born with cataracts (either blind or partially sighted), stunted growth, poor muscle tone, rickets, scoliosis, arthritis (some never walk), kidney problems and mental impairment.

In spite of these handicaps the little boys have extremely happy and cheeky personalities. Sadly, few survive to become adults. Yet today, it may be within our grasp to help cure this disease. Lowe Syndrome Trust is a registered charity, founded in June 2000 as the only UK charity to raise money for medical research to cure this disease. With your help, we can be one step near to a cure.

MEDICAL AND SCIENTIFIC ADVISORY BOARD

MEDICAL & SCIENTIFIC BOARD
Mr Nimalan Maruthianar, Consultant Orthopaedic Surgeon, Royal Free Hospital
Dr Detlef Bockenhauer, Consultant Nephrologist, Great Ormond Street Hospital
Professor Robert Unwin, Professor of Nephrology & Physiology, UCL
Professor Shamshad Cockcroft, Department of Physiology, UCL
Professor Philip Beales, Hon Consultant in Clinical Genetics, Institute of Child Health, UCL
Dr Rudiger Woscholski, Senior Lecturer, Division of Cell & Molecular Biology, Imperial College London
Professor Helen Cross, Reader, Paediatric Neurologist, Epileptology, Great Ormond Street Hospital
Professor Peng Khaw, Professor of Glaucoma and Ocular Healing and Consultant Ophthalmic Surgeon, Institute of Ophthalmology
Professor Robert Kleta, Potter Chair of Nephrology, Royal Free Hospital
Dr Richard Sandford PhD FRCP, University Reader in Renal Genetics, Honorary Consultant in Medical Genetics, Academic Laboratory of Medical Genetics, University of Cambridge

TRUSTEES
Mr Jonathan Ross OBE
Mrs Lorraine Thomas
Mrs Caroline Mitchell
Ms Penny Bizou
Mr Joseph Laycock

PATRONS
Baroness Susan Greenfield
Sir Richard Sykes
Melanie C
Tony Hadley
Jonathan Coleman
Penny Lancaster
Tom Conti
Christopher Biggins
Melanie Sykes
Lisa Voice
Susie Webb
Tris Payne
Mathieu Flamini
Melanie Blatt
Michael Jennings
Seville Bullapt